A Web-Based Tool to Apply the UNFC for Anthropogenic **Resource Recovery Projects**

Bhagya Jayasinghe, Iman Dorri, Alireza Sobouti, Juan Antonio Munizaga-Plaza, Soraya Heuss-Aßbichler

Introduction

- The transition to sustainable energy systems requires critical raw materials for • technologies such as **batteries**, wind turbines, and solar panels.
- Anthropogenic resources generated from waste streams (e.g., mining waste, slag and ashes, end-of-life materials) offer an opportunity to recover these materials aligning with **circular economy** principles.

Objective

- This project introduces a **novel web-based tool** developed within the **Horizon** Europe project FutuRaM (Future Availability of Secondary Raw Materials in Europe, futuram@eu).
- It supports the assessment of recovery projects and their classification according to the United Nations Framework Classification of Resources (UNFC).

UNFC for anthropogenic resources

The UNFC system uses a three-dimensional classification matrix to classify resource projects along three key axes; herein, 4 means low level and 1 means a high level of knowledge:

- G (Degree of Confidence): This axis focuses on the reliability of data regarding the product quantity and \bullet quality. It reflects the level of confidence in the potential recoverability of the quantities.
- F (Technical feasibility): This axis assesses whether the recovery methods and technologies are technically \bullet viable. It indicates the maturity of a project. It includes the Technology Readiness Level (TRL) and the status of the infrastructure.
- (Environmental and socio-economic viability): This axis evaluates the project's impact on the \bullet environment and its potential socio-economic benefits. It considers the alignment of the project with regulatory requirements and its acceptability from a social perspective.

] Project profile	2 Project definition	3 Controlling factors (CFs) identification	Data collection and assessment	5 Results categorization for CFs	UNFC classification
 Tasks: Key information on a project as an overview. Data gathered: Waste stream types, materials for recovery, project development phase, etc. 	• Tasks: Define the project objectives, scope assessment framework, and Realm of Discourse and identify key stakeholders.	• Tasks: Modification and finalizing CFs required for project classification.	 Tasks: Data collection for CFs and data sources. Assessment methods: Use standardized indicators and ratings for assessing selected CFs. 	• Tasks: Evaluate strengths and weaknesses for each factor and assign appropriate categories based on the factor 's status	• Tasks: Apply the E-F-G classification criteria and present results in a 2D matrix

Seven-stage procedure for project classification

- The Seven-stage procedure is a structured approach developed to ensure a thorough and standardized evaluation and classification of anthropogenic resource recovery projects in line with the UNFC.
- It supports project developers from initial data collection to final project classification and reporting. It provides stakeholders with a holistic view of the project for fact-based decision-making.
- Each stage is designed to provide **clarity, consistency and transparency** in the assessment process.

/ UNFC project reporting

• Output: Generate a full UNFC-compliant report with classification results and visual representations.

Figure 2: Seven-stage procedure to assess and classify a project

• It ensures a consistent assessment basis for comparing projects and identifying the best recovery options.

Development of the web-based tool

The web tool is designed to support users in classifying anthropogenic resource projects:

- **Front-end:** Developed using **HTML CSS, and JavaScript** to create a responsive and interactive user interface \bullet for data input, result visualization and report generation.
- **Back-end:** Developed using **Django** (Python web framework), ensuring scalability, flexibility and robustness. •
- Database: Used MYSQL to store input data and project results, with several tables holding many-to-many \bullet relationships between waste streams, stakeholders, development phases and controlling factors.
- Automated classification: The tool uses built-in algorithms to automatically classify projects based on user input, providing instant feedback on **project viability**.
- **Detailed reporting:** The tool generates UNFC-compliant reports, including recommendations for • stakeholders.

Figure 3: System architecture of the web-based tool

F-axis (Technical feasibility)	-	
Controlling factors	UNFC categorization	Technical feasibility with
Ordnance	F3	the controlling factors CEs
Mine/operational Design	F3	the controlling factors CFs
Water Consumption	F1	

Case study: Bollrich tailing storage facility

• Project overview: Located in Bollrich, this tailing storage facility contains significant quantities of Cobalt (Co),

		F11	F12	F1 3	F21	F2 2	F2 3	F31	F3 2	F3 3	F41	F4 2	F4 3
UNFC – class E3.2 – F3.2 – G2 Prospective project	E1.1	1 1.1	1 1.2	11.5	1 2.1	1 2.2	12.5	13.1	1 3.2	13.5	1 4.1	1 7.2	14.5
	E1.2												
	E2												
	E3.1												
	E3.2								G2				
	E3.3												

Figure 4: Result of categorization of the criteria and UNFC classification

Gallium (Ga), and Indium (In), vital materials for renewable energy technologies.

- **Classification of the project:**
 - **Degree of confidence (G2):** Moderate level of confidence in material quantities, based on exploration data. \checkmark
 - Technical feasibility (F3.2): Local studies indicate the potential for development but require more data \checkmark acquisition.
 - Environmental and socio-economic viability (E3.2): Environmental-socio-economic viability cannot yet be determined due to insufficient information.

Kontaktperson zum Poster: Prof. Dr. Soraya Heuss-Aßbichler Ludwig-Maximilians Universität München,

Department of Earth and Environmental Sciences

Telefonnummer: +49 (0) 8921806713 *E-Mail: heuss@lmu.de Webseite: https://futuram.eu*

