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Context: recAlcle Project
Recycling-oriented collaborative waste sorting by continual learning recilcle

FFG Al for Green - Kooperatives F&E Projekt

Duration: 01.07.2022 —30.09.2025 (39 Months)
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Goal:
Al-based visual assistance for workers in waste sorting plants to
improve conditions of work, reduce stress and workload, and
increase the sorting quality for better recycling and circular
economy.
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https://www.youtube.com/watch?v=EvuNJ_yZi3g
https://www.youtube.com/watch?v=ok4l3-q-5w4
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Problem: How to visually classify different types of plastic waste?

e Good: Classes are known in advance:
PET, PVC, PE, GVK, PS, ...

* Bad: Waste comes arbitrarily crushed
and in all rotations

e Bad: Labels + Packages/Bottles + Caps

e Bad: Dirt, stains, interleaves and
overlaps
(in reality! -- not lab conditions)
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Datasets: CIFAR100, DWRL, Synthetic

CIFAR100 Dataset (60 000 images, 100 classes)
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[https://www.cs.toronto.edu/~kriz/cifar.html]
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DWRL Dataset (5 classes)
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Synthetic Dataset

© recAlcle, Siemens

© Pro2Future GmbH, www.pro2future.at


https://www.cs.toronto.edu/%7Ekriz/cifar.html

Problem: Local and Seasonal Data Bias

Waste is biased based on location/seasons/events New waste ,emerges”

Christmas
[https://plasticoceans.org/creating-a-
more-sustainable-christmas]

Waste composition by income level (% share by type)
Waste composition...
...in high-income countries

- |

L..in low-income countries
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Source: World Bank Group, Knowledge Paper of the Urban Development Series, “What A Waste”, 2012

[https://dailybrief.oxan.com/Analysis/DB236831/Waste-management-is-key-to-sustainable-global-growth]

Festival
[https://drinkflowater.com/reducing-plastic-waste-at-events-the-
role-of-water-refill-stations]
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What is better: Transfer Learning or Continual Learning?

Transfer Learning Continual Learning

Use pretrained model and retrain it with all input Use pretrained model and fine-tune it iteratively with
data from use-cases batches of new input data from use-cases

»Classical” models and techniques used (CNN) Special techniques for fine-tuning (EWC, Replay)

+ Optimal fit for this training data set + Training data can be added continuously
- Needs all training data to be known a priori + Fine-tuning is fast

- Problem of Overfitting + Fastly adopts to data biases

- Local biases may not be optimally recognized - Accuracy may be worse in the beginning

- Retraining is costly (high computing overhead) - Catastrophic Forgetting: Accuracy ,,may“ decrease
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Method: Experimental Setup / Preparing the Training Datasets

1.

N

4.

Data Preprocessing

1. Synchronize
2. Split and Crop
3. Clean up
Object Detection
1. Detect Bounding-Boxes / Boundaries
2. Object Segmentation
3. Background Segmentation

Object Classification
1.  Annotate / Tag with Waste Type
2. Store individual images

Use for Training & Validation

Measured and Compared Accuracy for:

=  Transfer Learning
=  Continual Learning

v'  Baseline
v EWC
v" Replay

v' EWC+replay
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Object Detection Examples
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Results
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Results & Evaluation: Transfer Learning on CIFAR-100
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Test accuracy by dataset size Test accuracy and training time for various learning rates
Accuracy:
961 images: 21.36%
50 000 images: 76.17%

Best Configuration:
LR =0.0001, no dropout — 13% accuracy gain.
20minutes training time
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Results & Evaluation: Continual Learning on CIFAR-100
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Accuracy by continual learning strategy Accuracy by batch size and count

Strategies: Baseline, EWC, Replay, EWC+Replay.
Higher Accuracy: Fewer, larger batches (+9%).
Best Performance: . _ _
EWC+Replay, 64.83% accuracy (+3% baseline) Modified Bi-Weekly: Outperforms constant batch size
by 4%, achieving 63.44%.
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Results & Evaluation: CIFAR 100 vs. DWRL

Transfer Learning

Continuous Learning

CIFAR 100
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Conclusion and Outlook A|

Key Takeaways:

1. Continual learning starts weaker, but improves over time.

2. Continual learning adapts better to changing input streams (adapts to data bias).

3. Recommendation: bi-weekly batches and considering replaying upcoming events (e.g. Christmas).
q

EWC + replay have higher accuracy in the later stages (much data seen).

Outlook:
Further techniques have to be evaluated (network expansion, pruning, dynamic architecture search)

Author Contact:
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