

Comparative Analysis of Transfer and Continual Learning for Vision Based Particle Classification in Plastics Sorting for Recycling

Recy & DepoTech 2024, Leoben 13. – 15. 11. 2024

Somayeh Shami, Jesús Pestana, Michael Krisper, Benedikt Haecker, Julian Aberger, Mohammad Reza Hosseini Pro2Future GmbH, Siemens Österreich AG, Montanuniversität Leoben, University of Bologna

Shareholders of Pro2Future GmbH:

Public funding of Pro²Future:

 Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologi

Context: recAlcle Project

Recycling-oriented collaborative waste sorting by continual learning

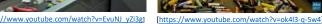
FFG AI for Green - Kooperatives F&E Projekt

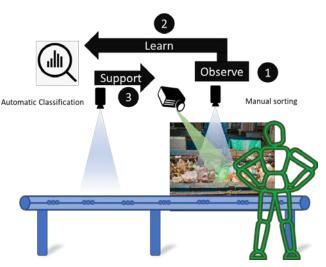
Duration: 01.07.2022 – 30.09.2025 (39 Months)

Partner:

- Pro2Future GmbH
- Montanuniversität Leoben (AVAW)
- Siemens Aktiengesellschaft Österreich (DI Graz + T Wien)

Pro²Future MONTAN UNIVERSITÄT LEOBEN SIEMENS





Goal:

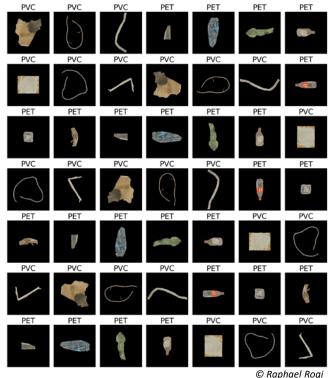
AI-based visual assistance for workers in waste sorting plants to improve conditions of work, reduce stress and workload, and increase the sorting quality for better recycling and circular economy.

© Pro2Future GmbH, www.pro2future.at

© Pro2Future GmbH, www.pro2future.at

Problem: How to visually classify different types of plastic waste?

- Good: Classes are known in advance: PET, PVC, PE, GVK, PS, ...
- **Bad: Waste comes arbitrarily crushed** ۲ and in all rotations
- **Bad: Labels + Packages/Bottles + Caps** ۲
- Bad: Dirt, stains, interleaves and ۲ overlaps (in reality! -- not lab conditions)

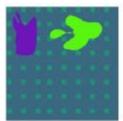


Datasets: CIFAR100, DWRL, Synthetic

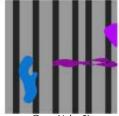
CIFAR100 Dataset (60 000 images, 100 classes)

[[]https://www.cs.toronto.edu/~kriz/cifar.html]

© recAlcle, MUL AVAW



Synthetic Dataset

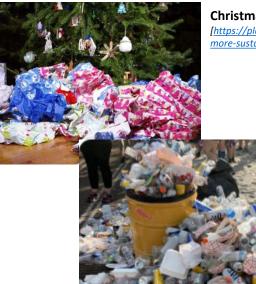


© recAlcle, Siemens

Problem: Local and Seasonal Data Bias

Waste is biased based on location/seasons/events

New waste "emerges"



Christmas [https://plasticoceans.org/creating-amore-sustainable-christmas]

What is better: Transfer Learning or Continual Learning?

Transfer Learning

Use pretrained model and retrain it with all input data from use-cases

"Classical" models and techniques used (CNN)

- + Optimal fit for this training data set
- Needs all training data to be known a priori
- Problem of Overfitting
- Local biases may not be optimally recognized
- Retraining is costly (high computing overhead)

Continual Learning

Use pretrained model and fine-tune it iteratively with batches of new input data from use-cases

Special techniques for fine-tuning (EWC, Replay)

- + Training data can be added continuously
- + Fine-tuning is fast
- + Fastly adopts to data biases
- Accuracy may be worse in the beginning
- Catastrophic Forgetting: Accuracy "may" decrease

Method: Experimental Setup / Preparing the Training Datasets

1. Data Preprocessing

- 1. Synchronize
- 2. Split and Crop
- 3. Clean up

2. Object Detection

- 1. Detect Bounding-Boxes / Boundaries
- 2. Object Segmentation
- 3. Background Segmentation

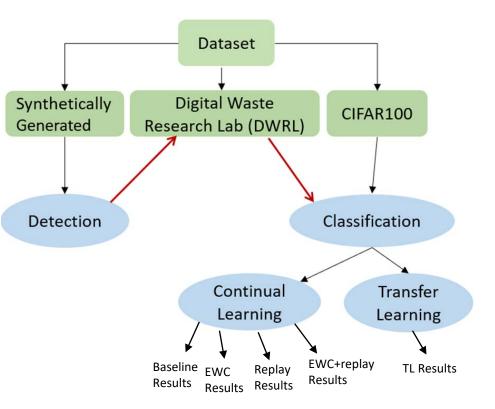
3. Object Classification

- 1. Annotate / Tag with Waste Type
- 2. Store individual images

4. Use for Training & Validation

5. Measured and Compared Accuracy for:

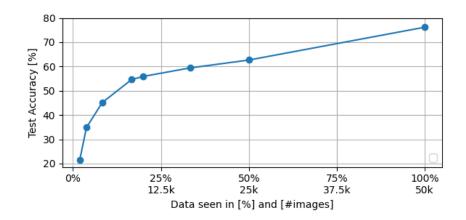
- Transfer Learning
- Continual Learning
 - ✓ Baseline
 - ✓ EWC
 - ✓ Replay
 - ✓ EWC+replay

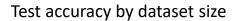


Object Detection Examples

Results

Results & Evaluation: Transfer Learning on CIFAR-100





Accuracy:

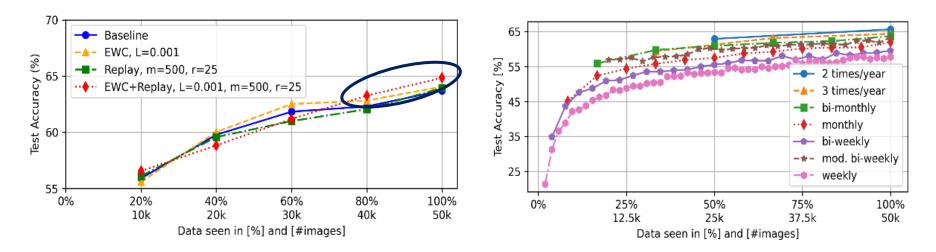
961 images:	21.36%
50 000 images:	76.17%

Test accuracy and training time for various learning rates

Best Configuration:

LR = 0.0001, no dropout – 13% accuracy gain. 20minutes training time

Results & Evaluation: Continual Learning on CIFAR-100



Accuracy by continual learning strategy **Strategies**: Baseline, EWC, Replay, EWC+Replay.

Best Performance:

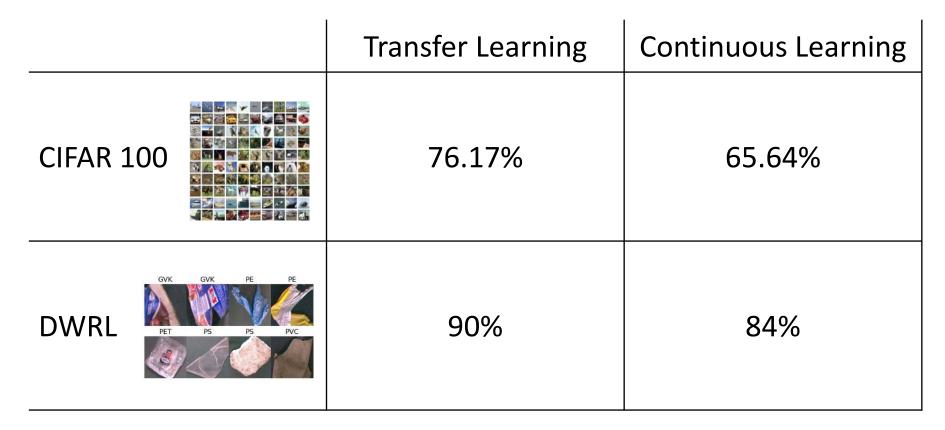
EWC+Replay, 64.83% accuracy (+3% baseline)

Accuracy by batch size and count

Higher Accuracy: Fewer, larger batches (+9%).

Modified Bi-Weekly: Outperforms constant batch size by 4%, achieving 63.44%.

Results & Evaluation: CIFAR 100 vs. DWRL



Conclusion and Outlook

Key Takeaways:

- 1. Continual learning starts weaker, but improves over time.
- 2. Continual learning adapts better to changing input streams (adapts to data bias).
- 3. Recommendation: bi-weekly batches and considering replaying upcoming events (e.g. Christmas).
- 4. EWC + replay have higher accuracy in the later stages (much data seen).

Outlook:

Further techniques have to be evaluated (network expansion, pruning, dynamic architecture search)

Author Contact:

Somayeh Shami Researcher @ Pro2Future <u>somayeh.shami@pro2future.at</u>

Michael Krisper Area Manager @ Pro2Future <u>michael.krisper@pro2future.at</u>

Cognitive and Sustainable Products and Production Systems of the Future!

Shareholders of Pro2Future GmbH:

Public funding of Pro²Future:

Bundesministerium Klimaschutz, Umwelt Energie, Mobilität, Innovation und Technologie

