

Implementation and evaluation of a real-time capable approach to sensorbased sorting using CNNs

Contents

- Problem
- Approach
 - Synthetic training data
 - Inference
- Results

Problem

Sorting system

Problem

conventional algorithms often are...

- engineered to fit a specific sorting task
- overgrown with configuration parameters
- limited to primitive features
- Convolutional Neural Networks (CNNs) have proven their effectiveness in many computer vision tasks
 - development of a CNN-based approach
 - evaluation on a real sorting system and sorting results

Materials for evaluation

Peanuts & Hibiscus tea

Construction and Demolition Waste (CDW) with high amounts of dust

6

Approach

Approach

semantic segmentation

valve activation

pneumatic valves

8

Architecture

- based on U-Net architecture (Ronneberger et al., 2015)
- padded convolutions
- reduction of number of featuremaps by factor of 4
- for CDW: downsampling and upsampling layers on input / output

Training

Synthetic data generation Extraction of objects

Synthetic data generation Extraction of objects

Synthetic data generation Additional dust images

Inference

Inference Overview

Inference

time

i + 1

i + 2

20 15.11.2024 © Fraunhofer IOSB

Inference

time

i + 2

21 15.11.2024 © Fraunhofer IOSB

Results

Results Classification result peanuts & hibiscus tea

image

result (semantic segmentation)

Results Sorting quality: peanuts & hibiscus tea

Results Sorting quality: peanuts & hibiscus tea

	False Positive Rate	False Negative Rate
Conventional	19 %	4 %
CNN	2 %	5 %

Materials:

- 400 g hibiscus tea
- 20 g peanut

Results Sorting quality: peanuts & hibiscus tea

	conventional		CNN	
	hibiscus	peanut	hibiscus	peanut
accepted	81.3%	3.5%	97.8%	5.0%
rejected	18.8%	96.5%	2.3%	95.0%

Sorting quality in % of true material class.

- 400 g hibiscus tea
- 20 g peanut

Results Classification result construction and demolition waste

image

result (semantic segmentation)

Results Sorting quality: construction and demolition waste

	False Positive Rate	False Negative Rate
Conventional	14 %	47 %
CNN	4 %	10 %

Materials:

- 2 kg concrete
- 3 kg other (brick and aerated concrete)
- 100 g dust

Results Sorting quality: construction and demolition waste

	conventional		CNN	
	other	concrete	other	concrete
accepted	86.2%	42.4%	96.3%	9.5%
rejected	13.9%	52.9%	2.1%	90.0%
lost	0.0%	4.8%	1.5%	0.5%

Sorting quality in % of true material class.

- 2 kg concrete
- 3 kg other (brick and aerated concrete)
- 100 g dust

Realtime capability Example: construction and demolition waste

- 30 ms max. allowed latency
- 10 ms for line buffering (64 + 2x32 lines)
- 4 ms for all GPU calculations (NVIDIA RTX 4070 GPU)
- throughput > 13,333 lines (4096 pixels) per second
 - Iimited by camera

Conclusion

Conclusion

- conventional algorithms are limited in quality
- direct mapping of semantic segmentation result to valves
- training with synthetically generated training data
- CNN achieves increased sorting quality
- real-time capable

Felix Lehnerer felix.lehnerer@iosb.fraunhofer.de

.....

00

OPTICAL CHARACTERIZATION OF MATERIALS International Conference

MARCH 26th – 27th, 2025 Karlsruhe, Germany

ocm-conference.com